MINISTRY OF EDUCATION

SECONDARY ENGAGEMENT PROGRAMME

GRADE 8

INTEGRATED SCIENCE

Week 8	Lesson 2
Торіс:	Respiration
Sub-topic:	Breathing and Gaseous Exchange surfaces
Objectives:	After observing pictures of respiratory structures, students will describe how gaseous exchange occurs in man and fish correctly.
Content	

Breathing

Breathing describes the combined action of inhaling (taking in) and exhaling (giving out) air. The purpose of breathing is to bring air close to the respiratory surface, be it the surface of the trachea in insects, or of gills as in fishes, or of lungs as in mammals. Breathing is external respiration and it involves movement of respiratory structures, yet plants do not breathe, they respire.

Breathing in a Fish

The movement in a fish, aimed at getting air, which is dissolved in the water, close to the gills are: -

- The opening and closing of the mouth,
- The raising and lowering of the gill cover or operculum

Structure of a Fish's Gill

Diagramatic Represention of Two Forms of Fish Gills

Breathing Mechanisms of a Fish

The water which enters in when the mouth is opened flows out over the gills when the operculum is raised and the mouth closed. The esophagus is closed before the mouth is closed and the floor of the mouth is raised so that the water does not enter the digestive system. The water flows in one direction only. As it passes over the gills, oxygen diffuses into the blood in the gills. Carbon dioxide in the blood in the gills diffuses into the water passes out of the operculum.

Breathing in Mammals

Structure of the lungs of man

Inhalation	Exhalation
Diaphragm muscles contract. Diaphragm flattens out	 Diaphragm muscles relax. Diaphragm arches upwards
 Intercostal muscles contract. 	 Intercostal muscles relax.
 Ribcage moves upwards and outwards. 	 Ribcage moves downwards and inwards.
 Volume of thoracic cavity increases 	 Volume of thoracic cavity decreases.
•Air pressure surrounding the lungs decreases.	 Air pressure surrounding the lungs increases.
•Air flows into the lungs	•Air is forced out of the lungs.

Respiratory surface of the lungs- The ALVEOLI

Features of Respiratory Surfaces

Fish's Gill	Mammal's lung	Common feature
The gill lamellae or filaments	The walls of the hollow	THIN
are delicate structures	alveoli are thin, just one cell	
	thick	
Gills are continuously bathed	Certain cells in the alveolar	MOIST
with water. They are wet.	walls secrete mucus.	
The numerous lamellae	The numerous alveoli greatly	EXTENSIVE
greatly increase the surface	increase the surface area of	
area of gills.	the lungs. It is said that if the	
	lungs of an adult man were	
	spread out, the tissues would	
	cover an area of about 90m ²	
The gills of a freshly caught	The are many capillaries	VASCULAR
fish are bright red. Each	around each alveolus	
lamella has a network of		
blood vessel.		

Adaptations of respiratory structures (General characteristics)

- 1. Moist easy for gases to <u>dissolve</u> before diffuse
- 2. Thin allow <u>rapid</u> diffusion of gases
- 3. Large surface area efficient gaseous exchange
- 4. Covered by <u>a network of blood</u> <u>capillaries</u> – efficient exchange and <u>transport</u> of respiratory gases

Home work

- 1. Draw and label three (3) parts of a fish's gill.
- 2. List two (2) features of a respiratory surface.
- 3. Which part of the lungs is responsible for gaseous exchange.
- 4. Write the equation for aerobic respiration.

References

- https://www.google.com/search?q=structure+of+a+fish+gill&tbm=isch&ved=2ahUKEwi EoPX5quzrAhVKJN8KHXihDAUQ2cCegQIABAA&oq=structure+of+a+fish+gill&gs_lcp=CgNpbWcQAzICCAA6BAgjECc 6BAgAEBg6BggAEAoQGDoHCCMQ6gIQJzoFCAAQsQM6BAgAEEM6BwgAELED EEM6CAgAELEDEIMBOgoIABCxAxCDARBDUKOLHVi_gx5g7IkeaBRwAHgEgA GfCYgB60aSAQ0yLTYuMy4xLjIuMy4ymAEAoAEBqgELZ3dzLXdpei1pbWewAQrA AQE&sclient=img&ei=EVFhX8TTDsrI_Ab4wrIo&bih=789&biw=1600&hl=en
- https://www.google.com/search?q=differences+between+inhalation+and+exhalation&hl= en&sxsrf=ALeKk02aq_TAzrtsF01_9LpNz2RWWc26KQ:1600214499886&source=lnms &tbm=isch&sa=X&ved=2ahUKEwjJz9HGrzrAhVrlXIEHdr5A1wQ_AUoAXoECA0QAw&biw=1600&bih=789#imgrc=5IGNhInt4s 8DJM
- Blackman, S., Bernard, M., Dalgety, F., &Sadoo, d.s (2000) Science in Daily Life Bk.2. Georgetown, Guyana. Ministry of Education, Guyana